
Magic Squares in Linear Algebra

Clayton Seelenmayer

April 19, 2021

Abstract

This document illustrates much of the structure behind what it
means to be a magic square in linear algebra by reiterating on Christo-
pher J. Henrich’s work with the intention of enlightening an avid lin-
ear algebra student or software engineer. Inside you’ll find answers on
what it means to be a magic square, how to detect one, understanding
their structure, how many may exist, as well as the possibility of other
exotic patterns.

A magic square is a matrix with distinct entries in which every
row, column, and diagonal share a common sum. A more detailed
definition is still to follow. The following is but one example of a
magic square of order 4 with a sum of 34 known as Dürer’s Square.
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1 Introduction

A magic square of order n is an arrangement of the numbers

{1, 2, ..., n2}

as an n by n matrix for some positive integer n such that each row, column,
and diagonal family add up to the same sum S.

1 + 2 + ...+ n2 = nS ↔ S =
n(n2 + 1)

2

To help clarify our understanding, lets define the class of diagonal families.
The most familiar may be that of the main-diagonal and off-diagonal as
transcribed in Figure 1. Magic squares that satisfy this property are often
known as Ordinary. The next set of diagonals is that of the quasi-pandiagonal
which can be observed in Figure 2. We will also be looking at other parallel
families of this as seen in Figure 3. Magic squares with magic properties over
these sets are known as Panmagic Squares and will be the highlight of this
paper.

Figure 1: Main and off diagonals.

Figure 2: Quasi-pandiagonal.

Figure 3: Broken diagonal.
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2 Dürer’s Square

First we will look at the structure of the Dürer Square, named after
Albrecht Dürer (1471-1528) who designed the Melancholia; the earliest record
of an order 4 panmagic square as seen in the background on the top right of
the Melancholia. We start by developing a labeling convention for the entries
of a magic square and a method of describing subspaces.

Albrecht Dürer’s ”Melancholia”

Dürer’s Square
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2.1 Denoting Subspaces

Consider the four by four matrix with numbered rows and columns in
base-2 as seen in Figure 4. Since each entry of this matrix can be coordinated
to uniquely, we can number the entries one through sixteen by taking the
row number in which they appeared in concatenated by which column they
appeared in, resulting in entries from the base-2 integer field of length four,
denoted F2

4.

Figure 4: Basis of F2
4.

Definition of a subspace: A subset U is a subspace of a finite-dimensional
vector space V if and only if U contains the additive identity, is closed under
vector addiction, and scalar multiplication.

We focus our attention to subspaces of F2
4 as they give us a handle on

describing groups of entries of our Dürer’s Square. We start by defining the
natural basis of F2

4 as the list (e1, e2, e3, e4) = (0001, 0010, 0100, 1000)
which can be thought of as the digits of our entries written in base-2.

Referring to figure 4, we can see that the 1st row is spanned by the basis
vectors (e3, e4) since the only spanning digits are in the 3rd and 4th place-
holder. Also, we can view the 1st column subspace by (e1, e2). Next, the
main diagonal may be spanned by (e1 + e3, e2 + e4). Of the broken diagonals
we can describe the 1st broken diagonal in figure 3 by (e1 + e2 + e4, e2 + e3

+ e4). Now that we have a way of describing each of the basic subspace, we
can begin to find the remaining subspaces that makeup a Dürer Square by
observing the affine parallel subspaces.
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Definition of an affine (parallel) subset: An affine subset of V is a
subset of V of the form v + U for some vector v in V and subspace U of V.

To get a better grasp with working on affine subspaces, one possible
example may be that of describing the last row of the Dürer Square by
looking at Figure 4. We start by taking the subspace that represents the 1st

row and add an appropriate element of F2
4, namely 11002, resulting in the

following basis.

(e3, e4) + 11002 = (e3 + 00112, e4 + 11002)

Another example may be the representation of the last column of the
Dürer Square. We start by taking the subspace representation for the 1st

column and add the appropriate element from F2
4, namely 11002.

(e1, e2) + 00112 = (e1 + 00112, e2 + 00112)

Figuring out which element of F2
4 we need for describing a specific row

or column may be intuitive as we just observe which digits aren’t spanned by
our basis vectors. This however still raises the question about describing the
diagonal families. We have already previously described the main-diagonal
family, but we can just simply add another appropriate element from F2

4,
namely 11002.

(e1 + e3, e2 + e4) + 11002 = (e1 + e3 + 11002, e2 + e4 + 11002)

This however still doesn’t satisfy our understanding of the other diagonal
families. We can describe the 1st quasi-pandiagonal that appears in Figure
2 by adding a different element from F2

4 to our main diagonal, namely 0111
(and similarly, the 2nd quasi-pandiagonal can be described by adding 1110).

(e1 + e3, e2 + e4) + 01112 = (e1 + e3 + 01112, e2 + e4 + 01112)

And lastly, we need a way to describe our final diagonal family. Starting
with our description for the 1st broken diagonal in Figure 3, we can represent
the 2nd family by adding the appropriate element from F2

4, 11002 (or the
3rd and 4th families by adding 00102 and 11112 respectively. It becomes
apparent that the diagonal families of Figure 2 and Figure 3 share much in
common, being that they are affine parallel to one another.

(e1 + e3, e2 + e4) + 11002 = (e1 + e3 + 11002, e2 + e4 + 11002)
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2.2 Denoting Linear Functions

Next we begin by taking the Dürer Square square in F2
4 as shown in

Figure 5 (after subtracting 1 from each entry for ease of representation) and
consider the parity matrix of the Dürer Square as shown in Figure 6. We
can view this matrix as a linear function f from F2

4 to (F2
4 to F2). Its worth

mentioning that this new matrix preserved its panmagic property. This now
brings our attention to describing a respective dual basis (f1, f2, f3, f4) for F2

that corresponds to (e1, e2, e3, e4) of F2
4.

Figure 5: Dürer’s square in F2
4.

Figure 6: Dürer’s square parity matrix.

Definition of Dual Basis: If (v1, ..., vn) is a basis of V then its dual
basis is (w1, ..., wn) of V’ (the vector space of all linear functionals on V)
where each w is a linear functional on V such that wi(vj) = {1 if i = j, or 0
if i 6= j}.

Referring back to the parity matrix of Dürer’s Square (Figure 6), we can
describe this matrix in terms of linear functions by the following equation.

f 1 + f 2 + f 4

To confirm this, we use our matrix from Figure 4 to see what exactly this
means. Applying each of f1, f2, and f4 to the natural basis of F2

4, (e1, e2, e3,
e4), yields the following 3 matrices respectively as seen in Figure 7. Taking
the sum of these 3 matrices yields our parity Dürer matrix (Figure 6).

Figure 7: Linear functions f1, f2, and f4.
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Since each of these linear functions are either constant, or more impor-
tantly, take on the values 0 and 1 equally often on a vector subspace, then it
will be true for any affine parallel subspace. This brings us to the following
proposition about Figure 6 having the panmagic property that it does.

Proposition 1:
Let ψ be a linear function on F2

4 with values in F2; let E be a linear sub-
space of F2

4 which is not contained in the null-space of ψ. Then, on any
affine subspace parallel to E, the function ψ takes the values 0 and 1 equally
often.

Now lets see if we can quantify the entirety of the magic properties that
are in the Dürer Square’s square by referring back to the binary representa-
tion as seen in Figure 5 and viewing each digit separately. Let Vi represent
the Dürer Square’s ith digits in F2. We can disect the Dürer Square into the
four squares as seen in Figure 8. These functions of Vi are really just affine
linear functions amongst each other as written in Figure 9.

Figure 8: Digits of Dürer’s square.

Figure 9: Associated linear functions.

Each value function V is non-constant on the subspaces corresponding to
each of our row, column, or diagonal family of interest as well as their affine
parallel subspaces. So a non-constant affine function W must take the values
0 and 1 equally often. We can describe this function W as:

w(x) = 8V 1 + 4V 2 + 2V 3 + V 4 + 1
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3 Generalizing Dürer Square

Much of this section was derived from Christopher J. Henrich’s work and
plays a core part in generalizing the Dürer Square. Define V to be the set Vi,
i = 1, ..., 4, of affine functions on F2

4 with values in F2. Denote the linear
part of Vi by ψi when discussing a particular affine square W.

Definition 1: Given V, then the map W from F2
4 to Z is an affine square.

Definition 2: Given V, and letting W be the affine square determined
by them; let E be a linear subspace of F2

4. E is magic for W if each of the
linear functions ψi is non-zero on E.

Proposition 2: Given V, and letting E be a linear subspace of F2
4 which

is magic for the affine square W determined by Vi, then W has uniform sums
on the affine subspaces parallel to E.

Proof: Let E have dimension d. By Proposition 1, each of the functions ψi takes the values 0 and 1
each 2d-1 times on every affine space parallel to E (as well as Vi). Therefore each sum of Vi over every
affine subspace is 2d-1; hence equation W.

Definition 3: Given V, and letting W be the affine square determined
by Vi, then W is nonsingular if ψ1, ..., ψ4 are linearly independent.

Proposition 3: Given V, and suppose that the affine square W deter-
mined by Vi is nonsingular, then the numbers in W are exactly 1, ..., 16.

Proof: Because 1 ≤W(x) ≤ 16 for x ∈ F2
4, and there are 16 points in F2

4, it is sufficient to show that
no two of them have the same value of W. Now suppose x and y are members of F2

4 and Vi(x) = Vi(y)
for i = 1, ..., 4. Then we have ψi(x) = ψi(y) for all i, but by hypothesis the ψi are linearly independent,
and therefore span F2

4*. Thus x = y.

Definition 4: An affine magic square is a nonsingular affine square for
which subspaces (e1, e2), (e3, e4), and (e1 + e2, e3 + e4) are magic.

Proposition 4: Every affine magic square is a pandiagonal or quasi-
pandiagonal magic square.

Proof: This follows from propositions 2 and 3.

In summary, we correlate F2
4 with Z through an affine nonsingular square

W which holds our magic property so long as each linear function ψi on F2
4

determined by W is nonzero. Each of our 16 entries will appear distinctly.
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4 How Many Magic Squares Exist?

We will be paying close attention to each linear function fi on F2
4. For

fi to be non-constant on a particular subspace then we must restrict this
linear function to maintain our magic property. In section 2.1: Denoting
Subspaces, we noticed that the 1st row is spanned by the basis vectors (e3,
e4) and that the other rows were just affine parallel to this one. So we must
restrict our subspace to being nonzero over e3 or e4. Similarly, the column
subspace must be nonzero over (e1, e2). Furthermore, we saw that each of
the diagonal families were simply affine parallel to one another, so we need
only restrict our diagonal subspace to being nonzero over (e1 + e3, e2 + e4).

This gives us a base on generating what turns out to be the six linear
functions that satisfy our constraints as seen in Figure 10. Some of these
linear expressions shouldn’t come as a surprise as we have seen this type of
behavior previously in Figure 9 in determining each Vi which represented
each digit in our binary representation of Dürer’s square. We observed that
even the digits held this magic property that we seek. It turns out that there
are still two more linear functions, L1 and L5, which preserve this magic
property that wasn’t mentioned previously. For visual completeness, Figure
11 includes the remaining two value functions V5 and V6 respective to these
two linear functions.

Figure 10: Relation candidates.

Figure 11: More associated linear functions.

8



In determining an affine magic square, we need to select four functions
(f1, f2, f3, and f4) such that they hold no linear relationship to preserve our
magic property. A linear relationship may result in the possibility of falsely
determining a magic square who’s row, column, or diagonal subspace turns
out to be contained in the null space of our linear relations and hence be zero
across all entries. We find that two such relations amongst those proposed
in Figure 10 arise as listed in Figure 12.

Figure 12: Satisfying relations.

We can express a relation among three functions as La + Lb + Lc = 0
which can only be zero in one way. However when trying to express four
functions La + Lb + Lc + Ld = 0, we find that a nonzero function that
isn’t eligible can be expressed as a sum of two eligible functions hence no
four-term relations exist among these eligible functions.

Given the 6 eligible functions from Figure 10 we can choose 4 in 15 ways.
2 of the 3-term relations exclude 3 sets so only 9 linearly independent sets of
eligible linear functions remain.

Since each linear function takes on the values 0 and 1 equally often, and
we are looking at cardinality-4 sets of these affine functions, then there are
16 sets. Since we can arrange these 4 affine functions in 4! (24) ways, and
that there are 8 geometric symmetries of a square, then the total number of
affine magic squares of order 4 is:

9 · 16 · 24/8 = 432

This means that there are 432 algebraic magic squares of order 4. A
complete enumeration of magic squares of order 4 was discovered in the sev-
enteenth century by Bernard Frénicle de Bessey. Also, Bensen and Jacoby
confirmed this computationally, as well as Ollerenshaw and Bondi more an-
alytically. These studies suggests that the number of affine magic squares
coincide with the number of algebraic magic squares. This gives us the final
proposition as follows.
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Proposition 5: Every pandiagonal or quasi-pandiagonal magic square
of order 4 is an affine magic square.

We can visualize these order 4 magic square patterns by taking a number
and pairing it with its counterpart by a line such that their sum is 17 as seen
in Figure 13.

Figure 13: Types of order 4 magic squares.

If L is the linear part of the square mapping, and q is a vector of F2
4

such that Lq = (1,1,1,1), then two cells in the square have complementary
values if and only if they’re the images under the position map of vectors
which differ by q. Each complementary pair is the image of a line parallel
to (0,q). The equation Lq = (1,1,1,1) depends on the set of eligible linear
functions (and not their order). The 9 independent sets of eligible functions
that determine q are seen in Figure 14 where the last column represents
which type of pattern as we saw in Figure 13.

Figure 14: Linear relations and their square types.
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The number of distinct squares generated by each of these patterns is:

24 · 168 = 48

Reflecting about the square’s diagonal corresponds to switching the 1st

and 2nd halves of the position vector. So q = (1,0,1,0), (0,1,0,1), and (1,1,1,1)
are unchanged and so their pattern is parallel, visualized by types 1, 2, and 3
respectively. The other possible values of q are interchanged so each type is
contributed to by two values, and the number of quasi-pandiagonal squares
visualized in types 4, 5, and 6 are:

(2 · 24 · 16)/8 = 96

Some of type 6, as well as the remaining types aren’t affine because their
complementary pairs aren’t all parallel in F2

4 in which there are two families
of four parallel lines.
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5 Benjamin Franklin’s Examples

We may now begin to generalize our understanding to magic squares
whose order is a power of 2. First constructed by Benjamin Franklin were
the following magic squares of order 8 (Figure 15) and order 16 (Figure 16).
We will only be focusing on the magic square of order 8, but much of our
procedure extends to the order 16 square along with many more unexplored
subspaces of various dimensions.

Figure 15: Order 8 magic square.

Figure 16: Order 16 magic square.
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Starting with our order 8 magic square, we begin by once again subtract-
ing 1 from each entry and writing these numbers in base-2 so that we may
view them in terms of F2

6 as seen in Figure 17.

Figure 17: Order 8 magic square in F2
4.

Similarly to what we did previously in Figure 8 and Figure 9, we first
consider each digit of our magic square in F2. The ith digit of each entry will
correspond to Vi, hence giving us the tables for 6 value functions of each Vi.
These functions of Vi are just affine linear functions amongst each other as
seen in Figure 19. First we define a natural basis of F2

6, namely (e1, e2, e3,
e4, e5, e6) as tabulated in Figure 19, and its corresponding dual basis in F2,
particularily (f1, f2, f3, f4, f5, f6). Similarly to Figure 4, we now have a basis
table for F2

6 and each linear function fi in F2. So for example, taking the
sum of the tables f3, f4, and f5 will produce a table in F2 that corresponds to
V1, the 1st digit of each entry in our order 8 magic square in F2

6.

Figure 18: Associated value functions.
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Figure 19: Basis of F2
6.

This order 8 magic square has a fascinating property in that several of
its subspaces in F2

6 preserve this magic property. In particular, of the 2-
dimensional subspaces, we find (e3, e6), (e2 + e3, e6), (e3, e5 + e6), and (e2

+ e3, e5 + e6).

For the 1st example, (e3, e6) represents the entries of Figure 19 spanned
by the 3rd and 6th entries. So we turn our attention to the contiguous 2-by-2
blocks starting with the 1st one covering positions 0000002, 0000012, 0010002,
0010012 having value 52, 61, 14, and 3 respectively in our magic square. We
can find the next contiguous 2-by-2 block by considering the affine parallel
subspaces generated by adding 0000102 to each position, and so on. We no-
tice that each of these 2-by-2 blocks independently share a sum of 130, half
of the sum S for this magic square, 260.

For the next subspace, we consider the 2-by-2 broken-blocks with initial
position 0000002, 0000012, 0110002, 0110012. This corresponds to the values
52, 61, 11, and 6 respectively in our magic square. Interestingly enough,
these numbers also sum to 130, as well as the other affine subspaces parallel
to this one.

The 3rd subspace says to focus on the 2-by-2 broken-blocks with initial
positions 0000002, 0000112, 0010002, 0010112. This corresponds to values 42,
13, 14, and 51 respectively in our magic square. These subspaces add to 130,
as well as the other affine parallel subspaces.

Once again, the fourth subspace says to focus on initial entries 0000002,
0000112, 0110002, 0110112. This corresponds to 52, 13, 11, and 54 respec-
tively. Once again we see that their sum is 130.
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Benjamin Franklin

Franklin made an interesting observation in that every ”bent-row” of
numbers shared the common sum of 260, which was the same sum S for
this magic square. A bent-row descends diagonally from the 1st entry, then
ascends diagonally from the 5th entry, wrapping around the square when nec-
essary. To better understand this, he was refering to entries 52, 3, 5, 54, 43,
28, 30, 45 in his magic square as seen in Figure 15. What he found was the
image of the vector subspace generated by the 3-dimensional basis (e3 + e6,
e2 + e5, e2 + e3 + e4). However, this only explains every 2nd bent row, only
4 of the 8 bent-rows. The other 4 bent-rows are the union of 2 affine parallel
subspaces. So for example, the 2nd bent elbow beginning at entry 14 is the
union of basis (e2 + e3 + e6, e4 + e5 + e6) which is the descending part, with
(e1 + e2 + e3 + e6, e4 + e5 + e6) which is the ascending part, to generate
the entries 14, 60, 59, 10 and 23, 38, 37, 19 respectively.
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6 Generating Magic Squares

First discovered by Robert Sedgewick and Kevin Wayne, when the order
n of our magic square is odd, we may easily generate a magic square by first
placing 1 in the bottom middle cell and repeatedly assign the next integer
to the cell diagonally adjacent to the right and down. If the cell is already
occupied, then we instead use the cell adjacently above, wrapping around the
square when necessary. Figure 20 shows two examples of generated magic
squares and their function calls. Following that is the provided source code,
written in Java.

Figure 20: Example generations.

16



pub l i c c l a s s MagicSquare {

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
i n t n = I n t e g e r . pa r s e In t ( args [ 0 ] ) ;
i f (n % 2 == 0) throw new RuntimeException (”n must be odd ” ) ;

// I n s t a n t i a t e our Square
i n t [ ] [ ] magic = new i n t [ n ] [ n ] ;

// Assign 1
i n t row = n−1;
i n t c o l = n /2 ;
magic [ row ] [ c o l ] = 1 ;

// F i l l Square
f o r ( i n t i = 2 ; i <= n∗n ; i++) {

i f ( magic [ ( row + 1) % n ] [ ( c o l + 1) % n ] == 0) {
row = ( row + 1) % n ;
c o l = ( c o l + 1) % n ;

} e l s e {
// Don ’ t Change Collumns
row = ( row − 1 + n) % n ;

}
magic [ row ] [ c o l ] = i ;

}

// Pr int
f o r ( i n t i = 0 ; i < n ; i++) {

f o r ( i n t j = 0 ; j < n ; j++) {
// Alignment
i f ( magic [ i ] [ j ] < 10) System . out . p r i n t (” ” ) ;
i f ( magic [ i ] [ j ] < 100) System . out . p r i n t (” ” ) ;
System . out . p r i n t ( magic [ i ] [ j ] + ” ” ) ;

}
System . out . p r i n t l n ( ) ;

}
}

}
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