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Abstract

This document illustrates much of the structure behind what it
means to be a magic square in linear algebra by reiterating on Christo-
pher J. Henrich’s work with the intention of enlightening an avid lin-
ear algebra student or software engineer. Inside you’ll find answers on
what it means to be a magic square, how to detect one, understanding
their structure, how many may exist, as well as the possibility of other
exotic patterns.

A magic square is a matrix with distinct entries in which every
row, column, and diagonal share a common sum. A more detailed
definition is still to follow. The following is but one example of a
magic square of order 4 with a sum of 34 known as Diirer’s Square.

16 3 2 13
3 10 11 8
9 6 7 12
4 15 14 1
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1 Introduction

A magic square of order n is an arrangement of the numbers
{1,2,...,n*}

as an n by n matrix for some positive integer n such that each row, column,
and diagonal family add up to the same sum S.

o n(n?+1)
2

To help clarify our understanding, lets define the class of diagonal families.
The most familiar may be that of the main-diagonal and off-diagonal as
transcribed in Figure 1. Magic squares that satisfy this property are often
known as Ordinary. The next set of diagonals is that of the quasi-pandiagonal
which can be observed in Figure 2. We will also be looking at other parallel
families of this as seen in Figure 3. Magic squares with magic properties over
these sets are known as Panmagic Squares and will be the highlight of this

paper.
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Figure 1: Main and off diagonals.

X X

X| | x

Figure 2: Quasi-pandiagonal.
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2 Diirer’s Square

First we will look at the structure of the Diirer Square, named after
Albrecht Diirer (1471-1528) who designed the Melancholia; the earliest record
of an order 4 panmagic square as seen in the background on the top right of
the Melancholia. We start by developing a labeling convention for the entries
of a magic square and a method of describing subspaces.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Diirer’s Square



2.1 Denoting Subspaces

Consider the four by four matrix with numbered rows and columns in
base-2 as seen in Figure 4. Since each entry of this matrix can be coordinated
to uniquely, we can number the entries one through sixteen by taking the
row number in which they appeared in concatenated by which column they
appeared in, resulting in entries from the base-2 integer field of length four,
denoted Fy?.

00 01 10 1
00 0000 0001 0010 0011
0 0100 0101 0110 0111
10 1000 1001 1010 1011
11 1100 1101 1110 1111

Figure 4: Basis of Fy?.

Definition of a subspace: A subset U is a subspace of a finite-dimensional
vector space V if and only if U contains the additive identity, is closed under
vector addiction, and scalar multiplication.

We focus our attention to subspaces of Fy? as they give us a handle on
describing groups of entries of our Diirer’s Square. We start by defining the
natural basis of Fy* as the list (e1, es, e3, e4) = (0001, 0010, 0100, 1000)
which can be thought of as the digits of our entries written in base-2.

Referring to figure 4, we can see that the 1% row is spanned by the basis
vectors (es, e4) since the only spanning digits are in the 3™ and 4" place-
holder. Also, we can view the 1% column subspace by (e;, e3). Next, the
main diagonal may be spanned by (e; + e3, es + e4). Of the broken diagonals
we can describe the 15 broken diagonal in figure 3 by (e; + ex + ey, e + €3
+ e4). Now that we have a way of describing each of the basic subspace, we
can begin to find the remaining subspaces that makeup a Diirer Square by
observing the affine parallel subspaces.



Definition of an affine (parallel) subset: An affine subset of V is a
subset of V of the form v + U for some vector v in V and subspace U of V.

To get a better grasp with working on affine subspaces, one possible
example may be that of describing the last row of the Diirer Square by
looking at Figure 4. We start by taking the subspace that represents the 1%
row and add an appropriate element of Fo?, namely 11005, resulting in the
following basis.

(63, 64) + 11002 = (63 + 00112, €4 + 11002)

Another example may be the representation of the last column of the
Diirer Square. We start by taking the subspace representation for the 15
column and add the appropriate element from Fy*, namely 1100,.

(61, 62) + 00112 = (61 + 00112, es + 00112)

Figuring out which element of Fo* we need for describing a specific row
or column may be intuitive as we just observe which digits aren’t spanned by
our basis vectors. This however still raises the question about describing the
diagonal families. We have already previously described the main-diagonal
family, but we can just simply add another appropriate element from Fy*,
namely 1100,.

(61 + €3, g + 64) + 11002 = (61 + e3 + 11002, €s +e4 + 11002)

This however still doesn’t satisfy our understanding of the other diagonal
families. We can describe the 15 quasi-pandiagonal that appears in Figure
2 by adding a different element from Fy?* to our main diagonal, namely 0111
(and similarly, the 2°¢ quasi-pandiagonal can be described by adding 1110).

(61 + es, €2 + 64) + 01112 = (61 + e3 + 01112, €2 + €4 + 01112)

And lastly, we need a way to describe our final diagonal family. Starting
with our description for the 1%* broken diagonal in Figure 3, we can represent
the 2nd family by adding the appropriate element from Fy?, 1100, (or the
3rd and 4th families by adding 0010, and 11115 respectively. It becomes
apparent that the diagonal families of Figure 2 and Figure 3 share much in
common, being that they are affine parallel to one another.

(61 + €3, €9 + 64) + 11002 = (61 + €3 + 11002, € + e4 + 11002)



2.2 Denoting Linear Functions

Next we begin by taking the Diirer Square square in Fy* as shown in
Figure 5 (after subtracting 1 from each entry for ease of representation) and
consider the parity matrix of the Diirer Square as shown in Figure 6. We
can view this matrix as a linear function f from Fy* to (F24 to Fy). Its worth
mentioning that this new matrix preserved its panmagic property. This now
brings our attention to describing a respective dual basis (fi, fa, f3, f4) for Fy
that corresponds to (ey, ey, €3, e4) of Fyt.

1111 0010 0001 1100
0100 1001 1010 0111
1000 0101 0110 1011
0011 1110 1101 0000

Figure 5: Diirer’s square in Fy*.

S = = o
- O
O = = o
-

Figure 6: Diirer’s square parity matrix.

Definition of Dual Basis: If (vy, ..., v;,) is a basis of V then its dual
basis is (wy, ..., w,) of V' (the vector space of all linear functionals on V)
where each w is a linear functional on V such that w;(v;) = {1 ifi=j, or 0

ifi ).

Referring back to the parity matrix of Diirer’s Square (Figure 6), we can
describe this matrix in terms of linear functions by the following equation.

Ji+ fo+ fa

To confirm this, we use our matrix from Figure 4 to see what exactly this
means. Applying each of f;, f;, and f; to the natural basis of Fy?, (e1, €3, €3,
e4), yields the following 3 matrices respectively as seen in Figure 7. Taking
the sum of these 3 matrices yields our parity Diirer matrix (Figure 6).

0000 0000 0101
0000 1111 0101
1111 0000 0101
1111 b (s s 0101

Figure 7: Linear functions fi, f5, and f;.



Since each of these linear functions are either constant, or more impor-
tantly, take on the values 0 and 1 equally often on a vector subspace, then it
will be true for any affine parallel subspace. This brings us to the following
proposition about Figure 6 having the panmagic property that it does.

Proposition 1:
Let 1 be a linear function on Fy* with values in Fy; let E be a linear sub-
space of Fo? which is not contained in the null-space of ). Then, on any
affine subspace parallel to E, the function 1 takes the values 0 and 1 equally
often.

Now lets see if we can quantify the entirety of the magic properties that
are in the Diirer Square’s square by referring back to the binary representa-
tion as seen in Figure 5 and viewing each digit separately. Let V; represent
the Diirer Square’s i** digits in Fo. We can disect the Diirer Square into the
four squares as seen in Figure 8. These functions of V; are really just affine
linear functions amongst each other as written in Figure 9.

1001 1001 1100 1010
Vi 0110 V5 1001 Via: 0011 Vi: 0101
1001 0110 0011 0101
0110 0110 1100 1010

Figure 8: Digits of Diirer’s square.

k= fo+fi+fa+1
Va=1h +tfs +fa + 1
Vi=fi+f, +f3 +1
Vi=Fi+f, e ol

Figure 9: Associated linear functions.
Each value function V is non-constant on the subspaces corresponding to
each of our row, column, or diagonal family of interest as well as their affine

parallel subspaces. So a non-constant affine function W must take the values
0 and 1 equally often. We can describe this function W as:



3 Generalizing Direr Square

Much of this section was derived from Christopher J. Henrich’s work and
plays a core part in generalizing the Diirer Square. Define V to be the set V;,
i =1, ..., 4, of affine functions on Fy* with values in Fy. Denote the linear
part of V; by v; when discussing a particular affine square W.

Definition 1: Given V, then the map W from Fy* to Z is an affine square.

Definition 2: Given V, and letting W be the affine square determined
by them; let E be a linear subspace of Fo?. E is magic for W if each of the
linear functions ; is non-zero on E.

Proposition 2: Given V, and letting E be a linear subspace of Fo* which
is magic for the affine square W determined by V;, then W has uniform sums

on the affine subspaces parallel to E.

Proof: Let E have dimension d. By Proposition 1, each of the functions 1; takes the values 0 and 1
each 291 times on every affine space parallel to E (as well as V;). Therefore each sum of V; over every
affine subspace is 29-1; hence equation W.

Definition 3: Given V, and letting W be the affine square determined
by Vi, then W is nonsingular if 41, ..., 14 are linearly independent.

Proposition 3: Given V, and suppose that the affine square W deter-

mined by V; is nonsingular, then the numbers in W are exactly 1, ..., 16.

Proof: Because 1 < W(x) < 16 for x € Fo?, and there are 16 points in Fo?, it is sufficient to show that
no two of them have the same value of W. Now suppose x and y are members of Fo* and V;(x) = V;(y)
for i =1, ..., 4. Then we have v¥;(z) = 4;(y) for all i, but by hypothesis the v; are linearly independent,
and therefore span Fo4*. Thus x = y.

Definition 4: An affine magic square is a nonsingular affine square for
which subspaces (e, e2), (e3, e4), and (e; + eq, e + €4) are magic.

Proposition 4: Every affine magic square is a pandiagonal or quasi-
pandiagonal magic square.

Proof: This follows from propositions 2 and 3.

In summary, we correlate Fo* with Z through an affine nonsingular square
W which holds our magic property so long as each linear function 1; on Fy?
determined by W is nonzero. Each of our 16 entries will appear distinctly.



4 How Many Magic Squares Exist?

We will be paying close attention to each linear function f; on Fy*. For
f; to be non-constant on a particular subspace then we must restrict this
linear function to maintain our magic property. In section 2.1: Denoting
Subspaces, we noticed that the 1% row is spanned by the basis vectors (e,
e4) and that the other rows were just affine parallel to this one. So we must
restrict our subspace to being nonzero over es or e4. Similarly, the column
subspace must be nonzero over (e, e3). Furthermore, we saw that each of
the diagonal families were simply affine parallel to one another, so we need
only restrict our diagonal subspace to being nonzero over (e; + es, es + €4).

This gives us a base on generating what turns out to be the six linear
functions that satisfy our constraints as seen in Figure 10. Some of these
linear expressions shouldn’t come as a surprise as we have seen this type of
behavior previously in Figure 9 in determining each V; which represented
each digit in our binary representation of Diirer’s square. We observed that
even the digits held this magic property that we seek. It turns out that there
are still two more linear functions, L; and Ls, which preserve this magic
property that wasn’t mentioned previously. For visual completeness, Figure
11 includes the remaining two value functions V5 and Vg respective to these
two linear functions.

Li=fa+fss Ly=fi+fa+tfas Li=fi+tf+fs
Li=f,+f3+fy Ls=fi+fss Le=fithh+fs
Figure 10: Relation candidates.

0101 0011
ve . 1 010 y_ 0011
0101 1100
1010 1100

Figure 11: More associated linear functions.



In determining an affine magic square, we need to select four functions
(fy, fa, f5, and fy) such that they hold no linear relationship to preserve our
magic property. A linear relationship may result in the possibility of falsely
determining a magic square who’s row, column, or diagonal subspace turns
out to be contained in the null space of our linear relations and hence be zero
across all entries. We find that two such relations amongst those proposed
in Figure 10 arise as listed in Figure 12.

Li+L,+L,=10
L,+L;+Ls=0
Figure 12: Satisfying relations.

We can express a relation among three functions as L, + Ly + L, = 0
which can only be zero in one way. However when trying to express four
functions L, + Ly + L. + Lg = 0, we find that a nonzero function that
isn’t eligible can be expressed as a sum of two eligible functions hence no
four-term relations exist among these eligible functions.

Given the 6 eligible functions from Figure 10 we can choose 4 in 15 ways.
2 of the 3-term relations exclude 3 sets so only 9 linearly independent sets of
eligible linear functions remain.

Since each linear function takes on the values 0 and 1 equally often, and
we are looking at cardinality-4 sets of these affine functions, then there are
16 sets. Since we can arrange these 4 affine functions in 4! (24) ways, and
that there are 8 geometric symmetries of a square, then the total number of
affine magic squares of order 4 is:

9.16-24/8 = 432

This means that there are 432 algebraic magic squares of order 4. A
complete enumeration of magic squares of order 4 was discovered in the sev-
enteenth century by Bernard Frénicle de Bessey. Also, Bensen and Jacoby
confirmed this computationally, as well as Ollerenshaw and Bondi more an-
alytically. These studies suggests that the number of affine magic squares
coincide with the number of algebraic magic squares. This gives us the final
proposition as follows.



Proposition 5: Every pandiagonal or quasi-pandiagonal magic square
of order 4 is an affine magic square.

We can visualize these order 4 magic square patterns by taking a number
and pairing it with its counterpart by a line such that their sum is 17 as seen
in Figure 13.

Typel Type Il Type Il Type IV Type V Type VI

Ik 5 o A g BRI

Type VII Type VIII TypeIX Type X Type X1 Type X1

o DRYeE o Sk

Figure 13: Types of order 4 magic squares.

If L is the linear part of the square mapping, and q is a vector of Fy*
such that Lq = (1,1,1,1), then two cells in the square have complementary
values if and only if they’re the images under the position map of vectors
which differ by q. Each complementary pair is the image of a line parallel
to (0,q). The equation Lq = (1,1,1,1) depends on the set of eligible linear
functions (and not their order). The 9 independent sets of eligible functions
that determine q are seen in Figure 14 where the last column represents
which type of pattern as we saw in Figure 13.

Linear parts g Class
Ly Ly Ly Ls| (L1000 | VI

Lj Ly Ly Lg|(0,0,1,0) vV

LyLyLs Lg|(0,1,0,1)
LyLs Ly Ls| (010 | I
LyL3LyLg|(0,1,0,0) | TV
L; Ly L5 Lg|¢0,0,1,1) | VI
Ly L3 Ly Ls5|(0,001)| IV
LyLs; Ly Lg|(1,1,1,1) | I
Ly Ly Ls Lg| (L0000 | V

Figure 14: Linear relations and their square types.
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The number of distinct squares generated by each of these patterns is:
24 - 168 = 48

Reflecting about the square’s diagonal corresponds to switching the 15
and 2"¢ halves of the position vector. So q = (1,0,1,0), (0,1,0,1), and (1,1,1,1)
are unchanged and so their pattern is parallel, visualized by types 1, 2, and 3
respectively. The other possible values of q are interchanged so each type is
contributed to by two values, and the number of quasi-pandiagonal squares
visualized in types 4, 5, and 6 are:

(2-24-16)/8 = 96

Some of type 6, as well as the remaining types aren’t affine because their
complementary pairs aren’t all parallel in Fo* in which there are two families
of four parallel lines.

11



5 Benjamin Franklin’s Examples

We may now begin to generalize our understanding to magic squares
whose order is a power of 2. First constructed by Benjamin Franklin were
the following magic squares of order 8 (Figure 15) and order 16 (Figure 16).
We will only be focusing on the magic square of order 8, but much of our
procedure extends to the order 16 square along with many more unexplored
subspaces of various dimensions.

52 61 4 13 20 29 36 45
14 3 62 51 46 35 30 19
53 60 5 12 21 28 37 44
11 6 59 54 43 38 27 22
55 58 7 10 23 26 39 42
9 8 57 56 41 40 25 24
50 63 2 15 18 31 34 47
16 1 64 49 48 33 32 17

Figure 15: Order 8 magic square.

200 217 232 249 8 25 40 57 72 89 104 121 136 153 168 185
58 39 26 7 250 31 218 199 186 167 154 135 122 103 90 71
198 219 230 251 6 27 38 59 70 91 102 123 134 155 166 187
60 37 28 5 252 229 220 197 188 165 156 133 124 101 92 69
201 216 233 248 9 24 41 56 73 88 105 120 137 152 169 184
55 42 23 10 247 234 215 202 183 170 151 138 119 106 87 74
203 214 235 246 11 22 43 54 75 86 107 118 139 150 171 182
53 44 21 12 245 236 213 204 181 172 149 140 117 108 85 76
205 212 237 244 13 20 45 52 77 84 109 116 141 148 173 180
51 46 19 14 243 238 211 206 179 174 147 142 115 110 83 78
207 210 239 242 15 18 47 50 79 82 111 114 143 146 175 178
49 48 17 16 241 240 209 208 177 176 145 144 113 112 81 80
196 221 228 253 4 29 36 61 68 93 100 125 132 157 164 189
62 35 30 3 254 227 222 195 190 163 158 131 126 99 94 67
194 223 226 255 2 31 34 63 66 95 98 127 130 159 162 191
64 33 32 1 256 225 224 193 192 161 160 129 128 97 96 65

Figure 16: Order 16 magic square.

12



Starting with our order 8 magic square, we begin by once again subtract-
ing 1 from each entry and writing these numbers in base-2 so that we may
view them in terms of F,% as seen in Figure 17.

000
001
010
011
100
101
110
111

000 001 010 011 100 101 110 111
110011 111100 000011 001100 010011 011100 100011 101100
001101 000010 111101 110010 101101 100010 011101 010010
110100 111011 000100 001011 010100 011011 100100 101011
001010 000101 111010 110101 101010 100101 011010 010101
110110 111001 000110 001001 010110 011001 100110 101001
001000 000111 111000 110111 101000 100111 011000 010111
110001 111110 000001 001110 010001 011110 100001 101110
001111 000000 111111 110000 101111 100000 011111 010000

Figure 17: Order 8 magic square in Fy*.

Similarly to what we did previously in Figure 8 and Figure 9, we first

consider each digit of our magic square in Fy. The it" digit of each entry will
correspond to V;, hence giving us the tables for 6 value functions of each V;.
These functions of V; are just affine linear functions amongst each other as
seen in Figure 19. First we define a natural basis of Fo® namely (eq, e, e3,
e4, €5, €¢) as tabulated in Figure 19, and its corresponding dual basis in Fs,
particularily (fy, fo, f3, fy, f5, fg). Similarly to Figure 4, we now have a basis
table for F»® and each linear function f; in Fy. So for example, taking the
sum of the tables f3, f;, and f5 will produce a table in Fy that corresponds to
V1, the 1%t digit of each entry in our order 8 magic square in Fy°.

fi f2 fa fa fs fe 1
v, 0 0 1 1 1 0 1
v, 0 0 1 0 1 0 1
v, 0 0 1 0 0 1 0
V, 1 1 1 0 0 1 0
Vs 0 1 1 0 0 1 1
Ve 1 1 0 0 0 1 1

Figure 18: Associated value functions.
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000 001 010 011 100 101 110 111
000 |O00000 000001 000010 000011 000100 000101 000110 000111
001 (001000 001001 001010 001011 001100 001101 001110 001111
010 |010000 010001 010010 010011 010100 010101 010110 010111
011 (011000 011001 011010 011011 011100 011101 011110 011111
100 |100000 100001 100010 100011 100100 100101 100110 100111
101 101000 101001 101010 101011 101100 101101 101110 101111
110 |110000 110001 110010 110011 110100 110101 110110 110111
111 111000 111001 111010 111011 111100 111101 111110 111111

Figure 19: Basis of Fy°.

This order 8 magic square has a fascinating property in that several of
its subspaces in Fy® preserve this magic property. In particular, of the 2-
dimensional subspaces, we find (es, eg), (e2 + e3, €g), (€3, e5 + €g), and (eg
+ e3, e5 + €g).

For the 15* example, (e3, eg) represents the entries of Figure 19 spanned
by the 3' and 6" entries. So we turn our attention to the contiguous 2-by-2
blocks starting with the 1%* one covering positions 0000005, 0000015, 0010005,
0010015 having value 52, 61, 14, and 3 respectively in our magic square. We
can find the next contiguous 2-by-2 block by considering the affine parallel
subspaces generated by adding 000010, to each position, and so on. We no-
tice that each of these 2-by-2 blocks independently share a sum of 130, half
of the sum S for this magic square, 260.

For the next subspace, we consider the 2-by-2 broken-blocks with initial
position 0000005, 0000015, 0110005, 0110015. This corresponds to the values
52, 61, 11, and 6 respectively in our magic square. Interestingly enough,
these numbers also sum to 130, as well as the other affine subspaces parallel
to this one.

The 3 subspace says to focus on the 2-by-2 broken-blocks with initial
positions 0000005, 0000115, 0010002, 0010115. This corresponds to values 42,
13, 14, and 51 respectively in our magic square. These subspaces add to 130,
as well as the other affine parallel subspaces.

Once again, the fourth subspace says to focus on initial entries 0000002,

0000115, 0110005, 011011,. This corresponds to 52, 13, 11, and 54 respec-
tively. Once again we see that their sum is 130.

14



Benjamin Franklin

Franklin made an interesting observation in that every "bent-row” of
numbers shared the common sum of 260, which was the same sum S for
this magic square. A bent-row descends diagonally from the 1% entry, then
ascends diagonally from the 5" entry, wrapping around the square when nec-
essary. To better understand this, he was refering to entries 52, 3, 5, 54, 43,
28, 30, 45 in his magic square as seen in Figure 15. What he found was the
image of the vector subspace generated by the 3-dimensional basis (e3 + eg,
ey + e5, €3 + e3 + e4). However, this only explains every 2°¢ bent row, only
4 of the 8 bent-rows. The other 4 bent-rows are the union of 2 affine parallel
subspaces. So for example, the 2"¢ bent elbow beginning at entry 14 is the
union of basis (e; + e3 + eg, €4 + €5 + eg) which is the descending part, with
(e1 + e + e3 + eg, €4 + €5 + eg) which is the ascending part, to generate
the entries 14, 60, 59, 10 and 23, 38, 37, 19 respectively.

15



6 Generating Magic Squares

First discovered by Robert Sedgewick and Kevin Wayne, when the order
n of our magic square is odd, we may easily generate a magic square by first
placing 1 in the bottom middle cell and repeatedly assign the next integer
to the cell diagonally adjacent to the right and down. If the cell is already
occupied, then we instead use the cell adjacently above, wrapping around the
square when necessary. Figure 20 shows two examples of generated magic
squares and their function calls. Following that is the provided source code,
written in Java.

% java MagicSquare 3
4 9 2

B & 7

g8 1 6

% java MagicSquare 5
i1 #3820 =2 U
g 17 38 J 3

42 B3 20 2L
23 9 ¥ 14 dv
TP 84 E B 35

Figure 20: Example generations.

16



public class MagicSquare {

public static void main(String [] args) {
int n = Integer.parselnt(args[0]);
if (n % 2 = 0) throw new RuntimeException(”n must be odd”);

// Instantiate our Square
int [][] magic = new int[n][n];

// Assign 1
int row = n—1;
int col = n/2;
magic [row ][ col] = 1;
// Fill Square
for (int i = 2; i <= n*n; i++) {
if (magic|[(row + 1) % n][(col + 1) % n] = 0) {
row = (row + 1) % n;
col = (col + 1) % n;
} else {
// Don’t Change Collumns
row = (row — 1 + n) % n;
}

magic [row ][ col] = 1i;

Y

}

// Print
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < mn; j++) {
// Alignment
if (magic[i][j] < 10) System.out.print(” 7);
if (magic[i][j] < 100) System.out.print(” 7);
System.out . print (magic[i][j] + 7 7);
}

System.out . println ();

17
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